Technical Information

Ceiling air diffuser
INDULTHERM
INDULTHERM-e

- Effective cooling and heating with a diffuser
- Thermomechanical or electrical switching
- Draught-free air distribution for cooling down to –12 K
Features

Performance features
- Effective cooling and heating using a diffuser
- For high supply air temperature differences
- Low room air velocities
- Draught-free air distribution for cooling down to -12 K
- Small pressure losses
- Large penetration depths in heating mode

INDULTHERM
- Fully-automatic switching without any external energy

INDULTHERM-e
- Thermomechanical or electrical switching between cooling and heating mode
- Also in combination with split and multi-split systems
- Flexible selection of switching temperature
INDULThERM is a self-regulating diffuser for cooling and heating via supply air

INDULThERM in cooling mode:
- Air is distributed in the room without any draught and with a temperature difference of up to -12 K.
- INDULThERM operates as a high-induction ceiling air diffuser.

INDULThERM in heating mode:
- Despite the difference in density, warm air is distributed throughout the entire room even down to floor level.
- During warm supply air, INDULThERM automatically switches to vertical air outlet for a large penetration depth without requiring any external energy.
- At the INDULThERM-e, this is achieved by an electric actuator.

Function

- During cooling mode, cooled air is distributed in the room at an optimal mixture and without any draught at a temperature rate down to -12 K.

- In heating mode, warm air is distributed throughout the entire room, even down to floor level, despite the difference in density.
Technical data

Types

Type RQ

- **INDULTERM RQ 600 or RQ 625**
 - Nominal size of 600 mm or 625 mm
 - Hole pattern 600
 - Air flow 250 m³/h to 1000 m³/h

Type RR

- **INDULTERM RR 600 or RR 625**
 - Nominal size of 600 mm or 625 mm
 - Hole pattern 600
 - Air flow 250 m³/h to 1000 m³/h

INDULTERM RQ 600 or RQ 625

- Nominal size 600 mm or 625 mm
- Hole pattern 500
- Air flow 180 m³/h to 650 m³/h

INDULTERM RR 600 or RR 625

- Nominal size 600 mm or 625 mm
- Hole pattern 500
- Air flow 180 m³/h to 650 m³/h

The INDULCLIP air guide elements

Proven highly inductive air guide elements permitting the individual arrangement of diffusers.

Thermal insert (with a segment disc)
Technical data

Front plate

The front plate of the INDULThERM is coated in RAL 9010. The INDULCLIP air guide elements are black or grey, similar to RAL 7035. Other colours are available on request. The central opening for heating mode is covered with a diagonally-running honeycomb cover in black or grey. Other colours are available on request.

Type RR INDULThERM ceiling diffusers are secured at three points by countersunk dome-head screws, type RQ diffusers are secured at four points. The front plate can be easily removed from the plenum box for service purposes. The plenum box has a standard butterfly damper for making adjustments from the room. Eight holes of 9 mm in Ø are provided in the top of the plenum box for suspension at the point of installation.

Type of mounting for nominal size 600

Cover plate (on premises) Plenum box

Foam-rubber seal Self-tapping screw with cap Front plate

Type of mounting for nominal size 625

Cover plate (on premises) Plenum box

Foam-rubber seal Self-tapping screw with cap Front plate

Dimensions for round and square plenum boxes

<table>
<thead>
<tr>
<th>Size</th>
<th>øA</th>
<th>øB</th>
<th>øC</th>
<th>øE</th>
<th>øD</th>
<th>R</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ 600</td>
<td></td>
<td></td>
<td>598</td>
<td>592</td>
<td>568</td>
<td>249</td>
<td>12</td>
<td>185</td>
</tr>
<tr>
<td>RQ 625</td>
<td>623</td>
<td></td>
<td>592</td>
<td>568</td>
<td>249</td>
<td>12</td>
<td>185</td>
<td>335</td>
</tr>
<tr>
<td>RR 600</td>
<td></td>
<td>600</td>
<td>592</td>
<td>568</td>
<td>249</td>
<td>12</td>
<td>185</td>
<td>335</td>
</tr>
<tr>
<td>RR 625</td>
<td></td>
<td>625</td>
<td>592</td>
<td>568</td>
<td>249</td>
<td>12</td>
<td>185</td>
<td>335</td>
</tr>
</tbody>
</table>

Notes:

INDULThERM-Mechanism
The INDULThERM mechanism is maintenance-free under normal operating conditions. At extremely high switching frequencies, the INDULThERM mechanism should be maintained regularly. It is available as a spare part and can be replaced, if required.

Control system
Thermo-mechanical drive (INDULThERM)
Switching from heating to cooling should be occur gradually and slowly due to the response time of the thermo-mechanical actuator.

Electric drive (INDULThERM-e)
The electric drive allows a fast switching between the operating conditions and is also suitable for multi-split systems.

For both types of drives a permanent heating under comfort conditions according to DIN 13779 is not intended.

Pressure pad
The optional pressure pad increases the penetration depth of the supply air stream in heating mode and increases the required static pressure according to the formulas on pages 11 and 12. The pressure pad is subject to maintenance due to the possibility of it becoming soiled by the supply air.
Rotary actuator INDULTHERM-e

Function
A rising edge at the signal input triggers a swivel 22 degrees clockwise, a falling edge at the signal input triggers a swivel 22 degrees counterclockwise. The holding torque is set to the minimum value at both positions.

Technical data

<table>
<thead>
<tr>
<th></th>
<th>Stepper motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>30 Ncm</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40° C to +85° C</td>
</tr>
<tr>
<td>Protection</td>
<td>IP54</td>
</tr>
<tr>
<td>Supply voltage range</td>
<td>24V (18-32V) pole-protected</td>
</tr>
<tr>
<td>Power requirements</td>
<td>Standby: 80 mA, Peak: 0.5A effective: 0.3A</td>
</tr>
<tr>
<td>Digital input</td>
<td>Impedance: approx. 5 kOhm Level: low < 8V and high < 16V</td>
</tr>
</tbody>
</table>

Activation

Supply voltage 24V DC

On-site activation of the servo-motor with switch:

- Cooling mode: Switch open; 0V = Segment disc closed
- Heating mode: Switch closed; 24V = Segment disc open

Cable with
L = 800 mm
Wire assignment

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply positive</td>
<td>Brown</td>
</tr>
<tr>
<td>Power supply negative</td>
<td>White</td>
</tr>
<tr>
<td>Input</td>
<td>Green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connection cable L = 800 mm</td>
</tr>
<tr>
<td>2</td>
<td>Rotary actuator</td>
</tr>
<tr>
<td>3</td>
<td>Segment disc</td>
</tr>
<tr>
<td>4</td>
<td>Segment ground</td>
</tr>
<tr>
<td>5</td>
<td>Distance ring</td>
</tr>
</tbody>
</table>
Ventilation design parameters

Supply air temperature 12 °C ... 22 °C
In cooling mode, the high induction permits temperature differences of up to -12 K. This permits the volumetric flow to be reduced, resulting in a reduction in investment costs for the air conditioner and the ductwork.

Supply air temperature 22 °C ... 28 °C
Switching phase between the cooling/heating air directions, limited comfort conditions.

Supply temperature 28 °C ... max. 40 °C
In heating mode, the supply air should circulate deep into the room, if possible down to floor level. The penetration depth depends on the supply air volumetric flow and on the temperature difference between supply air and room air (see design diagram on pages 11 and 12).

Measurement methods and standards

According to DIN EN ISO 7730:2007, the "local air velocity" is measured at an arbitrary point in the common area and averaged over 3 minutes.

Measurement method: DIN EN 13182:2002
Common area: DIN EN 13779:2007

The limits of the "common area" and the maximum permissible "local air velocity" must be coordinated between the building owner and planners or installers.

Our selection diagrams indicate the "average local air velocity" during cooling mode. It was determined from numerous measurement points distributed evenly in the room, of the reference level relevant to the design. 50% of the velocities are greater than the diagram value and 50% are less.

On the one hand, the actual "local air velocities" that occur can be influenced by the level of turbulence from mixed-air streams, and on the other hand by room air movements not caused by the air flow system, such as cold facades, heaters and the like.

Recommendation:
Room air velocity of: \(v = 0.12 \ldots 0.15 \text{ m/s at seat height} \) for highest demands.
Room air velocity of: \(v = 0.15 \ldots 0.17 \text{ m/s at seat height} \) for premium demands.

For VVS systems (variable volumetric flow systems), the flow through the supply air diffusers can be increased by 5 to 10%. The bandwidth of the sound pressure levels according to DIN 13779 can be utilised.

Note:
The acoustic diagrams on pages 11 and 12 indicate the average sound pressure level. For diffusers evenly distributed over the ceiling surface, the sound pressure level is also even.
Arrangement

For the layout, the smaller dimension of \(x_1\), \(x_2\) must be used. If there is only one diffuser in the room, the layout must be based on the smaller dimension of \(x_{w1}\), \(x_{w2}\).

A high level of room comfort is not only determined by a low room air velocity with as small temperature differences in the room as possible, but also an even air distribution in the common area.

Recommendation:

- Set the parallel distances with \(2 \cdot x_1\) or \(2 \cdot x_2 \leq 4\) m for a room height of approx. 3 m. If possible, the diffusers should be arranged uniformly in the room and the load to which each one is exposed should be equally distributed.
- Wall distance \(x_{w1}\) or \(x_{w2} \geq x_1\) or \(x_2\)
- Aim for symmetrical jet geometry and uniform arrangement of air diffusers in the room

Discharge characteristics in cooling mode:

A symmetrical distribution of the air diffusers in the room.

The discharge characteristics in cooling mode guarantee a stable room flow over a wide range of temperature differences of -12 K to 0 K and volumetric flows of 100...25 %.

The discharge characteristics in heating mode are characterised by a vertical supply air jet directed downward. You can find the penetration depth as a function of supply air volumetric flow and on the temperature difference between supply and room air in the design diagrams on pages 11 and 12. If the penetration depth is insufficient in individual cases, it can be increased by installing an optional pressure pad.

The pressure pad is subject to maintenance due to the possibility of contamination by supply air.
Design example

Given:
- Surface area: \(A = 8 \times 12 \text{ m} = 96 \text{ m}^2 \)
- Room height: \(H = 3.5 \text{ m} \)
- Air flow rate: \(V_{\text{sup}} = 4000 \text{ m}^3/\text{h} \)
- Nachhallzeit: \(T_N = 1.2 \text{ s} \)
- Maximum sound pressure level in the room: \(L_p = 40 \text{ dB(A)} \)
- Jet path: \(X_1 = 2.0 \text{ m} \)
 \(X_2 = 1.5 \text{ m} \)
- Supply air temperature difference in heating mode: \(10 \text{ K} \)

Selected:
- Quantity: 8
- Air diffuser: INDULTHERM RQ 600
- Ambient air velocity reference level: 1.8 m

Calculated:
- Specific supply air flow rate: \(V_{\text{sup}} = \frac{4000 \text{ m}^3/\text{h}}{8} = 500 \text{ m}^3/\text{h} \)
- Specific air exchange rate: \(L_{\text{V, spez.}} = \frac{4000 \text{ m}^3/\text{h}}{96 \text{ m}^2} = 41.6 \text{ m}^3/\text{hm}^2 \)
- Sound pressure level from diagram: \(L_p = 35.0 \text{ dB(A)} \)
- Correction for other room heights: \(\Delta L_1 = -0.7 \text{ dB(A)} \)
- Correction for other reverberation times: \(\Delta L_2 = +3.0 \text{ dB(A)} \)
- Actual sound pressure level in the room: \(L_p \approx 37.3 \text{ dB(A)} \)
- Vertical jet path = room height – measurement level: \(y = 3.5 \text{ m} - 1.8 \text{ m} = 1.7 \text{ m} \)
- Average room air velocity from diagram: \(v = 0.14 \text{ m/s} \)
- Penetration depth in heating mode from diagram: \(2.8 \text{ m (with pressure pad 3.5 m)} \)
Ventilation design parameters – Hole pattern 500

Cooling

- Average air velocity ν [m/s]
- Supply air flow rate \dot{V} [m³/h]
- Horizontal jet path x [m]
- Vertical jet path y [m]

Heating

- Supply air temperature difference $t_{sup} - t_{room}$ [K]
- Average air velocity ν [m/s]
- Supply air flow rate \dot{V} [m³/h]
- Penetration depth d [m]

Acoustic layout

- Specific air change rate Q [m³/h/m²]
- Sound pressure level in the room L_p [dB(A)]
- Supply air flow rate \dot{V} [m³/h]

Correction ΔL_{TN} for other reverberation times

<table>
<thead>
<tr>
<th>T_R [s]</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔL_{TN} [dB(A)]</td>
<td>-1.8</td>
<td>-0.8</td>
<td>0</td>
<td>+0.7</td>
<td>+1.2</td>
<td>+1.8</td>
<td>+2.2</td>
<td>+3.0</td>
</tr>
</tbody>
</table>

Correction ΔL_{R} for other room heights

<table>
<thead>
<tr>
<th>H [m]</th>
<th>2.5</th>
<th>2.7</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔL_{R} [dB(A)]</td>
<td>+0.8</td>
<td>+0.4</td>
<td>0</td>
<td>-0.7</td>
<td>-1.2</td>
<td>-1.8</td>
<td>-2.2</td>
<td>-3.0</td>
</tr>
</tbody>
</table>

Pressure loss cooling operations \dot{V} [m³/h]

- Standard version $\Delta p_{St} = \dot{V}^2 / 6000$ [Pa]
- With pressure pad (optional) $\Delta p_{St} = \dot{V}^2 / 3200$ [Pa]

Acoustic diagrams apply for:

- Room height: 3.0 m
- Reverberation time: 0.6 s
- For open damper

The design diagrams apply to air exchange rates from 1.5 to 12 h⁻¹ and a temperature difference of -12 K when cooling.
Ventilation design parameters – Hole pattern 600

Cooling

<table>
<thead>
<tr>
<th>H[m]</th>
<th>2.5</th>
<th>2.7</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆Lrs [dB(A)]</td>
<td>+1.2</td>
<td>+1.8</td>
<td>+2.2</td>
<td>+3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heating

<table>
<thead>
<tr>
<th>H[m]</th>
<th>2.5</th>
<th>2.7</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆Lrs [dB(A)]</td>
<td>+0.8</td>
<td>+0.4</td>
<td>0</td>
<td>-0.7</td>
<td>-1.2</td>
<td>-1.8</td>
<td>-2.2</td>
<td>-3.0</td>
</tr>
</tbody>
</table>

Acoustic layout

- Specific air change rate \([m^3/h/m^2] \)
- Sound pressure level in the area \([dB(A)] \)
- Supply air flow rate \([m^3/h] \)

Pressure loss cooling operations

- Standard version \(\Delta p_{st} = \frac{V^2}{22600} \ [Pa] \)
- With pressure pad (optional) \(\Delta p_{st} = \frac{V^2}{4800} \ [Pa] \)

Acoustic diagrams apply for:
- Room height: 3.0 m
- Reverberation time: 0.6 s
 - for open damper

The design diagrams apply to air exchange rates from 1.5 to 12 \(h^{-1} \) and a temperature difference of -12 K when cooling.
Ceiling air diffuser INDULTHERM - Thermo-mechanical switching from cooling to heating

Consisting of:
- highly inductive discharge elements INDULCLIP black and grey, similar to RAL 7035, active in cooling mode
- of a low-inductive outlet opening in the middle of the plate (open in heating mode), with honeycomb cover 15 x 15 mm. Colours black or grey.
- a galvanised sheet metal front plate, painted in RAL 9010
- a thermomechanically adjustable THERM insert, easily accessible, attached directly to the front plate.

Functions:
- Room cooling and ventilation in normal mode (cooling mode under comfort conditions)
- Room heating in startup mode (heat-up without comfort). The heating jet flows through the room according to layout
- Switching is controlled through supply air temperature without the need for an external energy source

Ceiling air diffuser INDULTHERM-e - Electrical switching from cooling to heating

Consisting of:
- highly inductive discharge elements INDULCLIP black and grey, similar to RAL 7035, active in cooling mode
- of a low-inductive outlet opening in the middle of the plate (open in heating mode), with honeycomb cover 15 x 15 mm. Colours black or grey.
- a galvanised sheet metal front plate, painted in RAL 9010
- an electrically adjustable THERM insert, easily accessible, attached directly to the front plate

Functions:
- Room cooling and ventilation in normal mode (cooling mode under comfort conditions)
- Room heating in startup mode (heat-up without comfort). The heating jet flows through the room according to layout
- Switching is controlled through supply air temperature without the need for an external energy source
- Switching between cooling and heating mode by means of an electrical drive
- Switching is provided by the customer

Plenum box

For ceiling air diffuser INDULTHERM, made of Zincor sheet metal, 8 points of suspension Ø 9 mm, with round connection socket and butterfly damper operable from the room. For version INDULTHERM-e with cable bushing.

Type: INDULTHERM INDULTHERM-e

Type: Ceiling air diffuser Type RR (round front plate) - Three-point fastening at the plenum box

☐ Ceiling air diffuser Type RQ (square front plate) - Four-point fastening at the plenum box

Size

600/625 mm, connection socket Ø 249 mm

Nominal front plate dimensions 600 mm 625 mm

Hole pattern 500 mm 600 mm

Manufacturer: Maschinenfabrik Gg. Kiefer GmbH

Additional cost for coating of front plate in selected RAL tones

Additional cost for honeycomb cover coated in selected RAL tones

Additional cost for pressure pad for enlarging the penetration depth in heating mode
Data for inquiries

Data required for the technical design and offer preparation:

Recipient:
Fax-No.: 0711/8109-205
Maschinenfabrik Gg. Kiefer GmbH
Heilbronner Straße 380-396
70469 Stuttgart

Sender:

Ceiling air diffuser

- **INDULTHERM**
- **INDULTHERM-e**

Project:

Project No. Customer: ________ Date/Associate: ____________ Project No. Kiefer _______

<table>
<thead>
<tr>
<th>Room or module name</th>
<th>Sample room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of these rooms/modules</td>
<td>1</td>
</tr>
<tr>
<td>Spec. supply air volumetric flow [m³/hm²]</td>
<td>10</td>
</tr>
<tr>
<td>Room width [m]</td>
<td>4</td>
</tr>
<tr>
<td>Room length [m]</td>
<td>5</td>
</tr>
<tr>
<td>Area [m²]</td>
<td>20</td>
</tr>
<tr>
<td>Room height [m]</td>
<td>3</td>
</tr>
<tr>
<td>Cooling capacity [W/m²]</td>
<td>80</td>
</tr>
<tr>
<td>Room air temperature [°C]</td>
<td>26</td>
</tr>
<tr>
<td>Supply air temperature [°C]</td>
<td>14</td>
</tr>
<tr>
<td>Average room air velocity [m/s]</td>
<td>0.15</td>
</tr>
<tr>
<td>at room height [m]</td>
<td>1.3</td>
</tr>
<tr>
<td>Sound pressure level in the room [dB(A)]</td>
<td>38</td>
</tr>
<tr>
<td>at reverberation time [s]</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Product Range

Components:
Linear, wall, ceiling and air outlet diffusers, chilled ceiling panels, recirculation coolers, cross-flow units, concrete core cooling with air. Axial and radial ventilators, hot-gas ventilators, plastic ventilators.

Systems:
Air conditioning plants of all kinds for comfort (office, administration, shopping centres, hospitals, libraries, museums, etc.) and industrial applications (machine construction, high-tech, textile, plastics, chemicals, automotive, soft drinks, food industry, etc.).

Services

Consulting and planning:
We provide advice concerning all aspects of our systems and create system analyses and cost estimates based on cooling load / pipe network / energy cost / efficiency calculations. We also develop proposals concerning suggested layouts for air distribution, lighting and ceiling systems; and compile lighting-related data using the latest software tools, as well as developing and implementing control-technology related concepts in our own MSR division.

We are furthermore able to draw on a wealth of experience from previous projects when it comes to designing innovative products and new projects.

Laboratory:
Certificates, 1:1 room airflow laboratory analyses; acoustic and aerodynamic analyses of air conditioning modules. Development of innovative air conditioning components. Caloric performance measurements of air and water-related components on test stands. On-site comfort measurements to assess thermal comfort and indoor air quality.

Maintenance and servicing:
All kinds of air-conditioning and climate control systems as part of maintenance and service contracts.